Exercise 34

Find an equation of the tangent line to the curve at the given point.

$$
y=x^{2} \ln x, \quad(1,0)
$$

Solution

The aim is to find the slope of the tangent line at $x=1$, so start by taking the derivative of the function with respect to x by using the product rule.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(x^{2} \ln x\right) \\
& =\left[\frac{d}{d x}\left(x^{2}\right)\right] \ln x+x^{2}\left[\frac{d}{d x}(\ln x)\right] \\
& =(2 x) \ln x+x^{2}\left(\frac{1}{x}\right) \\
& =2 x \ln x+x \\
& =x(2 \ln x+1)
\end{aligned}
$$

Set $x=1$ to get $y^{\prime}(1)$.

$$
y^{\prime}(1)=1(2 \ln 1+1)=2(0)+1=1
$$

Then use the point-slope formula to get the equation of the tangent line.

$$
\begin{gathered}
y-0=y^{\prime}(1)(x-1) \\
y-0=1(x-1) \\
y=x-1
\end{gathered}
$$

